Value Proposition/USP
We have identified a range of novel synthetic antibodies and other compounds that hold the promise of treating snakebite envenoming more selective, efficient and cost-effective. Snakebite envenoming is a serious problem in many areas of the world resulting in more than 100,000 deaths and 400,000 serious injuries every year. Current anti-venoms (antibody based) are made in animals, giving rise to immunogenic responses in humans, expensive production (horse and snake farms needed), purification, storage issues, cold-chain etc. The novel synthetic anti-venoms can be produced as 99.9% pure and at low costs since there is no need for animal farms, snake farms, or series of purification steps.

Commercial Perspectives
There is currently a huge unmet need for cheap synthetic, high-quality anti-venoms, not only for human use but also in the veterinary sector as well, since many domestic animals including pets are killed by snake bites. Among the “developed” countries, USA is probably the country suffering most from the consequences of snake bites and US spending on current available anti-venom drugs for humans runs into more than $ 100 millions annually. Thus, given the drawbacks of the currently available therapies there is a significant opportunity for bringing high quality and selective new synthetic anti-venom products to the market.

Technology Summary
By the use of phage display techniques and other biotechnology procedures, we have been able to identify our synthetic anti-venoms that are active against essentially any snake toxin. We already have several synthetic anti-venoms in our portfolio and are actively pursuing the identification of additional active compounds. The synthetic anti-toxins have been shown to work in vitro (biochemical assays) and in vivo (mouse models), in the sense that these compounds can bind to and neutralize different snake toxins.

Development Phase
The novel synthetic compounds are now being characterized and optimized with regard to solubility, potency, stability, and bioavailability. It is anticipated to reach the lead stage within 12 months (1Q2019) and then progress into formal preclinical studies with one or more compound candidates.

The inventors
Brian Lohse
+ 5 more

Contact Information
Hanne Junker Elmelund
Senior Commercial Officer
+45 30 59 08 54
Hanne.Elmelund@adm.ku.dk

Seeking
• Funding/Investors
• Partner/Research Collaboration

EP Priority patent application filed March 2018

Biotech and Pharma