Novel Modulators of Fast Synaptic Inhibition

New peptide based compounds act on Gephyrin to modulate GABAergic Transmission

A) Pharmacological action of the gephyrin super-binding peptides. The peptides exert their activity on GABAergic and glycinergic transmission through their high-affinity binding to the receptor-binding site of gephyrin, which interferes with the gephyrin-mediated recruitment of the receptors to synaptic sites.

B) Visualization of the inhibitory post-synapse via SIM imaging. Note that the peptide-based labeling appears more confined than the corresponding immunogenic labeling. Peptides affect

C) Effect of the peptides on GABA_R clustering in living neurons. The peptides change the ratio of synaptic over extra-synaptic GABA_Rs.

D) Effect of the peptides on fast synaptic transmission within brain slices. At micromolar concentrations the peptides reduce the amplitude of miniature post-synaptic currents (mIPSCs).

Value proposition/USP
Potential pharmacological treatment of mental disorders by a unique and conceptually novel mode of action. Our peptides are highly subtype-specific and do not interfere with normal receptor function.

Business Opportunity/Objective/commercial perspectives
Medicines such as benzodiazepines that target GABA receptors are among the most prescribed psychoactive drugs on the marked and are useful to treat numerous mental disorders. Nonetheless, current medicines alter the normal receptor function and suffer from poor receptor subtype-specificity. Because of its unique pharmacological action our invention is likely to be superior to current treatments. Due to their unprecedented high binding affinity and selectivity, the invention can also be used for visualization of the inhibitory synapse, superior to antibody-based approaches.

Technology description/technology Summary
The gephyrin protein controls the recruitment of GABA receptors to the synaptic sites by binding specifically to intracellular regions of receptor subunits. By binding to gephyrin, our peptides reduce GABA receptor recruitment to the synapse and thereby modulate the fast synaptic inhibition.

Development phase/current state
Our studies in vitro confirm the peptides’ ability to modulate GABAergic transmission by binding to gephyrin. We are currently studying their effect in vivo in a mouse model.

The inventors
Professor Kristian Strømgard and Asst. Prof. Hans Michael Maric from the Department of Drug Design and Pharmacology.

Contact information
Liv Søndergaard Thomsen, liv.thomsen@adm.ku.dk +45 2057 0297

Intellectual property rights
PCT patent application nr. PCT/DK2016/050369 filed on 16 November 2016. The University of Copenhagen holds all the rights to the invention.